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Relevancy

Objectives

This project will create a model-based simulation (MBS) capability for tailoring the fabri-
cation processes and the properties of wide band gap semiconductors thin films (TF) with
engineered nanoscale porosity via the: \

1. computational prediction of the morphology of a TF as it derives from a given set of
deposition parameters;

2. theoretical determination of the deposition conditions leading to the creation of a
given target nanostructure;

3. computational prediction of mechanical properties such as the porosity distribution
throughout the film, assessment of its mechanical stability along with the spatial dis-
tributions of the intrinsic stresses, interfacial fracture toughness, and (heterogeneous)
elastic moduli as well as their symmetry properties;

4. development of advanced bending theory of TFs and computational measure of the
constitutive parameters required for these theories. This will contribute to future
developments in which én situ measurements of the spatial distribution of TF curvature
are used for the real-time estimation of the intrinsic stresses in nanoporous TFs.

Approach.
The project’s objectives will be achieved in two ways:

1. By using molecular dynamics simulations (MDS) to relate a given set of deposition
parameters to the resulting microstructure. These simulations, although generalizable
to every material system for which interaction potentials are known, will focus on
MgF,, SiC, and GaN as specific material systems.

2. By developing a novel bending theory for a continuum body with microstructure.
Specifically, we will formulate a bending theory for columnar and porous TFs so as
to explicitly account for the presence of a specific microstructure in the estimation of
stress levels and mechanical stability.

“Email: costanzoQengr.psu.edu; Phone: {814) 863-2030
tEmail: grayQengr.psu.edu; Phone: (814) 863-1778
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Background on the prediction of mechanical properties of TFs

Research over the past 15 years [10, 15, 18, 20, 21, 24, 29] has identified various methods to
understand the mechanical behavior of compliant substrates. In addition, methods to assess
the substrate/film interface stability have also been considered [14, 29]. These methods
include molecular dynamics [12] and continuum mechanics {5, 10, 11, 14, 15, 18, 20, 21,
24, 29]. Other studies on the mechanisms of deformation at the nanoscale have included a
combination of molecular simulations and continuum analyses [1].

The reasons for determining the elastic moduli (EM) are many. First of all, the EM are
the fundamental property that one needs to correlate the TF macroscopic deformation to
the internal stress state. Secondly, EM are correlated with properties such as hardness and
wave speed velocities, that is, properties which can be measured via current experimental
techniques. In addition, knowledge residual stresses {(RS) and EM at the very fine scale allows
one to determine these same properties at courser scales by simply computing their spatial
averages. This is highly desirable because it allows one to enhance current experimental
techniques which estimate TF stresses via optical measurements of the film/substrate system
curvature. '

The theoretical and experimental estimation of TF intrinsic stresses has been studied
by several authors (see [2, 3, 6, 8, 13, 16, 17, 22, 23, 25, 27, 28, 30}). The majority of
these studies are devoted to high density and often crystalline TFs. For these materials,
the relations between experimentally measured quantities (such as TF curvature) and the
intrinsic stresses, such as Stoney’s relation [26] and variants thereof (cf. [7] and [19}]), have
often been established via continuum analyses where the film is viewed as a homogeneous
and almost always isotropic material. More recently, approaches that take into account the
through-the-thickness variation of RS and EM in compositionally graded thin films have
been considered (see, e.g., [3, 4, 9]). Unfortunately, these methods do not apply in cases
where there is a high degree of inhomogeneity and in which the dominant morphological
feature is the architecture of the film’s columns. For these reasons, a new approach is
needed in which the spatial distribution of porosity and the columnar morphology is clearly
reflected in the curvature/stress relations.

Background Information and Partnerships

Achieving the project’s objectives will provide the scientific and engineering communities
with the ability to engineer nanoporous TFs structures with specified porosity, morphology,
and mechanical properties. In addition, we will develop, and correlate with experiments, the
ability to connect spatial curvature measurements with intrinsic stresses in TFs. The aspect
of using discrete information at the nanoscale to create a bridge to analysis at continuum
scales is of great import for the mechanical analysis of nano-structures, micro-structures,
and micro-electro-mechanical systems (MEMS).

A partnership with Prof. Russell Messier of The Pennsylvania State University exists
for the purpose of correlating experimentally determined TF morphology as a function of
deposition parameters with the theoretically determined counterparts. The present AFOSR-
funded work is an outgrowth of an NSF grant (CMS-9733653) obtained by F. Costanzo on
the mechanical properties of sculptured TFs.
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Innovation in Science

To date, we have:

Researched and assembled a library of potentials for the materials systems of interest.
Bach of the materials systems involves either a pairwise or many-body potential—
some systems include both types.

The library of potentials has been implemented in a parallel MD code for open systems
that simulates the deposition of TFs.

Software has been developed that uses the appropriéte potential for each MD-deposited
system and calculates stresses and moduli within the film.

We have expanded continuum homogenization notions of effective properties to apply
to systems undergoing large deformations and applicable to a full dynamic context.

We formulated a new Lagrangian-based MD scheme which includes the automatic
computation of the mechanical properties of a thermo-elastic system in a regime of
large deformation.

We have formulated a novel bending theory, which uses the concept of director to
specifically account for the columnar microstructure of the films of interest. Further-
more, the theory we have developed has been derived as a continuum counterpart of
a discrete model, which allows one to provide a simple physical interpretation of the
solutions predicted by the continuum theory. ‘ '

The developed director-based TF bending theory has been used in a series of “proof-
of-concept” calculations to show that the deformation behavior of a columnar and/or
porous TF can depart substantially from that predicted by current techniques for the
estimation of the stress in TF.

The main scientific results obtained so far are:

1.

The derivation of a procedure for determining continuum properties from discrete
information (i.e., MD). This procedure is consistent with homogenization theory and
shows that the concept of virial stress, namely the typical stress measure used in
MD calculations of mechanical properties in solids, is a meaningful stress measure
only under a very restrictive set of assumptions. By contrast, we have proposed a
stress measure that is is much more general and that recovers that provided by the
virial stress under the restrictive assumption that make the concept of virial stress
meaningful.

Our preliminary calculations, based on the director-based bending theory we have
developed, show that a stress state assessment based on the standard Euler-Bernoulli
bending theory* can yield to gross misinterpretation of the actual stress/strain.

The research conducted so far has resulted in the following conference presentation and
refereed publications acknowledging AFOSR sponsorship:

*The Euler-Bernoulli begin theory, i.e., the elementary bending theory of Strength of Materials, is the
de facto state of the art in stress measurement for TFs based on optical curvature measurement of the TF
substrate.
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Innovation in Design

Nanoporous TFs made from wide band gap semiconductors, which include SiC and the
group III nitrides, are being explored by a number of researchers for a wide range of ap-
plications. For example, porous SiC is of interest for chemical sensing and much work has
been done on porous Si sensors, with which a wide variety of gases have been sensed. In
addition, researchers are currently studying porous SiC and GaN onto which transition met-
als, transition metal oxides, and metallic sulfides have been deposited for use as catalysts.
Nanoporous sculptured TFs (NSTFs), in particular, are of interest for short wavelength op-
tical devices. NSTFs possess unique porous nanostructures that can be realized by rotating
the substrate during film growth. For example, these nanostructures, possessing right- or
left-handedness, provide a way of distinguishing right-circular and left-circular polariza-
tions of light. We are developing a model-based simulation (MBS) capability to engineer
the morphology and mechanical properties of nanoporous TFs.

In constructing the proposed MBS capability, we intend to establish a methodology to
bridge length scales ranging a few nanometers to microns. By incorporating information
gathered by atomistic simulations into nonlinear continuum models, the approach can be
generalized to address a number of issues that are important in MEMS. These issues in-
clude measures of surface hardness, interfacial friction, interfacial fracture toughness, and
resistance to fatigue.
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